Crystal Structure of Vanadium Suboxide $\mathbf{V}_{\mathbf{2}} \mathbf{0}_{1 \pm x}$

KENJI HIRAGA and MAKOTO HIRABAYASHI
The Research Institute for Iron, Steel and Other Metals, Tohoku University, Sendai, Japan

Received June 17, 1974; Received in Revised form August 25, 1974

Abstract

A monoclinic structure with the unit cell content $2 \mathrm{~V}_{7} \mathrm{O}_{3}$ and its derivative structure designated as $\mathrm{V}_{7} \mathrm{O}_{3+x}$ have been determined by X-ray and electron diffraction study. In both the structures, the oxygen atoms occupy regularly special octahedral interstitial sites in the body-centered monoclinic (or pseudo-tetragonal) metal lattice with the axial ratio $c / a \approx 1.2$. The ordered distribution of the oxygen atoms is interpreted from the condition of minimization of the elastic strain in the vanadium lattice.

Introduction

Recently much interest has been focused upon vanadium oxides in connection with metal-insulator transitions in $V_{n} \mathrm{O}_{2 n-1}$ (1). However, the crystal structures and the phase relationships of vanadium suboxides with the composition $\mathrm{O} / \mathrm{V} \lesssim 1 / 2$ have not so far been established.

The present study is undertaken to determine the structure of the suboxide designated as $\mathrm{V}_{2} \mathrm{O}_{1 \pm x}$ or γ phase existing below about $1100^{\circ} \mathrm{C}$. Some contradictions have been noticed in previous reports on the crystal structure of this phase. According to an X-ray work of Westman (2), the $\mathrm{V}_{2} \mathrm{O}$ phase has a monoclinic unit cell, of which the lattice constants are five times the three axes of the metal sublattice; $A=5 \times 2.942 \AA, B=5 \times$ $2.926 \AA, C=5 \times 3.585 \AA$ and $\beta=90.38^{\circ}$ at $\mathrm{O} / \mathrm{V}=0.53$. Cambini, Pellegrini, and Amelinckx (3) proposed a different monoclinic cell with $A=9.52 \AA, B=2.95 \AA, C=$ $7.77 \AA$ and $\beta=90.66^{\circ}$, which contains $2 \mathrm{~V}_{7} \mathrm{O}_{4}$ in seven cells of the metal sublattice, but did not determine the arrangement of oxygen atoms.

In the present paper, we propose a superstructure of the metal sublattice with ideal stoichiometry $\mathrm{V}_{7} \mathrm{O}_{3}$ in the hypostoichiometric region $\mathrm{O} / \mathrm{V}=0.44-0.48$, and its derivative structure which will be denoted as $\mathrm{V}_{7} \mathrm{O}_{3+x}$ in the hyperstoichiometric region $\mathrm{O} / \mathrm{V}=0.52$ 0.54 . In these structures, the oxygen atoms are
distributed regularly in special octahedral interstitial sites of the metal sublattice. The oxygen arrangements are discussed in terms of the elastic energy associated with the displacement of the nearest neighbor metal atoms, which is caused by the oxygen atoms situated in the octahedral interstitial sites of the metal sublattice.

Experimental Procedares

Several specimens in the concentration range $\mathrm{O} / \mathrm{V}=0.44-0.58$ were prepared by the same method as in the previous work (4). The specimens were annealed at $1000^{\circ} \mathrm{C}$ for one week under vacuum and then cooled slowly to room temperature. The oxygen contents of the specimens were determined from the increase in weight on oxidation to form the pentaoxide $\mathrm{V}_{2} \mathrm{O}_{5}$ as the end product by heating in air at $650^{\circ} \mathrm{C}$ for one week, and agreed very well with the nominal compositions.

To prepare thin foils for electron diffraction and electron microscopy, bulk specimens were cut to 0.5 mm thick and the slices were jet-polished with use of a solution of 20% sulphuric acid and 80% methanol. The final thinning was done by a conventional electropolishing method with the same solution until a perforation was detected. X-ray powder diffractometry was made with filtered $\mathrm{CuK} \mathrm{\alpha}$ radiation.

Experimental Results

Lattice parameters of the Metal Subcell
The metal subcell of the $\gamma-\mathrm{V}_{2} \mathrm{O}_{1 \pm x}$ phase is monoclinic (or pseudotetragonal); $c>a \gtrsim b$,

Fig. 1. Lattice parameters of the metal subcell of $\gamma-\mathrm{V}_{2} \mathrm{O}_{1 \pm x}$ as a function of composition together with the values of β^{\prime} phase (4). Data by Westman (2) and Cambini et al. (3) are plotted by full circles and triangles, respectively.
$c / a \approx 1.20$ and $\beta_{0} \approx 90.3^{\circ}$. In Fig. 1, the lattice parameters are plotted as a function of oxygen content together with those of the tetragonal β^{\prime} phase (4), being in good agreement with the previous data (2, 3). Since the data are lying approximately on an extrapolation of those of the β^{\prime} phase, it is reasonable that the oxygen atoms in $\mathrm{V}_{2} \mathrm{O}_{1 \pm x}$ occupy the octahedral interstitial sites between closest vanadium atoms along $[001]_{m}$ similarly to the case of the β^{\prime} phase ${ }^{1}$.

Electron Microscopic Observation

Prior to analyzing the crystal structure, microstructures were examined by transmission electron microscopy. An example of electron micrographs is shown in Fig. 2. We can see a number of antiphase boundaries roughly parallel to $[\overline{1} 02]_{m}$, many of which are terminated at dislocations as was observed
${ }^{1}$ The index subscribed by m refers to the metal sublattice.

Fig. 2. A transmission electron micrograph of $\mathrm{VO}_{0.48}$, showing a number of antiphase boundaries. The foil surface is nearly parallel to $(010)_{m}$.

by Cambini et al. (3). The microscopic observation suggests that the structure of $\mathrm{V}_{2} \mathrm{O}_{1 \pm x}$ may have various kinds of displacement vectors with respect to the oxygen arrangement. This characteristic will become clear from the structure which will be presented in the following section.

Structure of $\mathrm{V}_{7} \mathrm{O}_{3}$

Some selected-area electron diffraction patterns of a specimen $\mathrm{O} / \mathrm{V}=0.44$ are shown in Fig. 3, where the indices refer to the monoclinic metal lattice. In the patterns (a) and (b), in addition to strong fundamental reflections, a number of superlattice spots are lying parallel to the line connecting the origin and $\overline{1} 03_{m}$ spot with the spacing of $1 / 7$ of the distance between the two spots. However, no superlattice spot appears in the patterns (c) and (d), which correspond to the $[001]_{m}$ and $[100]_{m}$ incidences, respectively.

All the diffraction patterns observed agree with the constructed reciprocal lattice of Fig. 4, where large and small circles correspond to the fundamental and superlattice reflections, respectively. The result seems to be consistent with that of Cambini et al. (3), and gives the

Fig. 4. Reciprocal lattice for the $\mathrm{V}_{7} \mathrm{O}_{3}$ structure. Large and small circles are the fundamental and superlattice reflections, respectively. Indices refer to the metal sublattice.
relations between the indices h, k, l for the fundamental lattice and those H, K, L for the superlattice, i.e., $H=3 h+l, \quad K=k$ and $L=2 l-h$.

The diffraction patterns can be interpreted by a monoclinic cell with $A=\left(9 a^{2}+c^{2}+\right.$ $\left.6 a c \cdot \cos \beta_{0}\right)^{1 / 2} \simeq 9.5 \AA, \quad B=b \simeq 2.9 \quad \AA, \quad C=$ $\left(a^{2}+4 c^{2}-4 a c \cdot \cos \beta_{0}\right)^{1 / 2} \simeq 7.7 \AA$ and $\beta=$ 90.8°, which is illustrated in Fig. 5(a). It is noted here that the cell dimension is identical with that proposed by Cambini et al. (3), but the direction of the vector \mathbf{A} is opposite to that in their model.
The space group $C 2 / m$ is chosen to describe the structure, as deduced from the symmetry as well as from the observed extinction rule that no reflections appear for $H+K=2 n+1$. The unit cell contains seven cells of the metal sublattice. It is quite reasonable, therefore, to assume the ideal stoichiometry $\mathrm{V}_{14} \mathrm{O}_{6}$ $(\mathrm{O} / \mathrm{V}=0.43)$ for this superstructure, taking into account the composition of the specimen $\mathrm{O} / \mathrm{V}=0.44$. The atomic positions are then determined by comparing the observed patterns of electron diffraction as well as the intensity data of X-ray diffractometry with the calculated structure factors. The model is deduced from the following considerations.

1. All the oxygen atoms are on the octahedral interstitial sites between the closest metal atoms along [001] $]_{m}$.
2. The vanadium atoms adjacent to the oxygen atoms are pushed apart from the ideal positions along $[001]_{m}$.

There are three possible sets of the oxygen distributions which satisfy the first condition, but the best agreement with the diffraction data can be obtained by the distribution listed in Table I. A projection of the atomic arrangement upon the $(010)_{m}$ plane is schematically illustrated in Fig. 5(b) by taking the area as large as $7 a \times 7 c$. It is seen from the figure that the oxygen atoms are lying on three successive planes parallel to ($\overline{1} 03)_{m}$ and the oxygen atoms at the $4(i)$ sites are displaced slightly from the ideal octahedral positions along [001] $]_{m}$ as indicated by arrows. The displacement is incorporated with that of the neighboring metal atom, and δ and δ^{\prime} represent the displacements of the metal and oxygen atoms,

Fig. 5. (a) Monoclinic superstructure with stoichiometry $\mathrm{V}_{7} \mathrm{O}_{3}$. (b) Projection on (010$)_{m}$ plane of the large cell $7 a \times 7 c$. Open and full circles indicate vanadium and oxygen atoms, respectively. Circles with a horizontal bar represent the atoms lying on the plane $Y=1 / 2$. Open circles with asterisks represent the metal atoms at the origins of the atomic rows parallel to [001$]_{m}$, of which the Z coordinate is given in terms of n of $Z=n / 14$ in the bottom.

TABLE I
SUPERSTRUCTURE OF $\mathrm{V}_{7} \mathrm{O}_{3}$

Space group:	$C 2 / m($ No. 12), monoclinic.
Unit cell dimension: $A=\left(9 a^{2}+c^{2}+6 a c \cdot \cos \beta_{0}\right)^{1 / 2} \simeq 9.5 \AA$	
	$B=b \simeq 2.9 \AA$
	$C=\left(a^{2}+4 c^{2}-4 a c \cdot \cos \beta_{0}\right)^{1 / 2} \simeq 7.7 \AA$
	$\beta=\cos ^{-1}\left[\left(2 c^{2}-3 a^{2}+5 a c \cdot \cos \beta_{0}\right) / A C\right] \simeq 90.8^{\circ}$
Atomic position:	$(0,0,0 ; 1 / 2,1 / 2,0)+$
2 V in $2(a):$	$0,0,0$,
2 O in $2(d):$	$0,1 / 2,1 / 2$.
12 V in $4(i):$	$x, 0, z ; \bar{x}, 0, \bar{z}$
	$x=\left\{1-\left(\delta+\delta^{\prime}\right)\right\} / 7, z=3\left\{1-\left(\delta+\delta^{\prime}\right)\right\} / 7$
	$x=(3-\delta) / 7, z=(2-3 \delta) / 7$
	$x=\left\{5-\left(\delta-\delta^{\prime}\right)\right\} / 7, z=\left\{1-3\left(\delta-\delta^{\prime}\right)\right\} / 7$.
4 O in $4(i):$	$x=\left(3-2 \delta^{\prime}\right) / 14, z=3\left(3-2 \delta^{\prime}\right) / 14$,
	where $\delta=0.080$ and $\delta^{\prime}=0.014$.

being evaluated, respectively, as 0.080 ± 0.008 and 0.014 ± 0.005 from X-ray powder diffractometry.

As listed in Table II, the structure factors observed by X-ray diffractometry agree well with the results calculated from this model,
being R factor ~ 0.15. The present model can also well explain the X-ray diffraction data obtained by the previous workers (2, 3). An attempt was made to interpret the diffraction data in terms of other models which belong to space groups $C m$ and $C 2$, but the present

TABLE II
Comparison of the Lattice Spacings and Structure Factors of VO 0.44 $\left(A=9.507 \AA, B=2.935 \AA, C=7.695 \AA, \beta=90.84^{\circ} ; B=1.2 \AA^{2}\right)$

hkl	$d_{\text {obsd }}$	$d_{\text {caled }}$	$\|F\|_{\text {obsd }}$	$\|F\|_{\text {calcd }}$	$h k l$	$d_{\text {obsd }}$	$d_{\text {calcd }}$	$\|F\|_{\text {obsd }}$	$\|F\|_{\text {calcd }}$
001	7.705	7.694	5	2	T 16	1.168	1168	29	34
002	3.846	3.847	6	4	406	1.135	$1.136)$)	
2021	3.01	3.012	$6)$	12	224	135	1.135	71	78^{a}
2021	3.01	2.969)	6	12	224	1130	1.130	71	78^{4}
111	2.634	2.630	4	5	802)	1.130	1.130		
003	2.566	2.565	12	16	515	1.114	1.114	17	24
203	2.271	2.271)		803	1.072	1.072	29	34
401	2.261	$2.261\}$	120	106	621	1.068	1.068	17	6
203	2.247	2.244			622	1.039	1.039	55	50
310	2.154	2.153	13	5	225	1.034	1.034	22	30
311	2.079	2.079	100	100	407	1.003	1.003	21	27
402	2.009	2.009	45	53	407	0.9920	0.9922	15	13
113	1.889	1.888	34	48	606	0.9898	0.9898	43	43
204	1.792	1.792	33	43	317	0.9754	0.9751	36	42
204	1.774	1.774	60	57	912	0.9654	0.9654	5	14
313	1.657	1.657	9	2	026	0.9654	0.9656)	15	14
114	1.589	1.589	20	29	008	0.9618	0.9618	38	40
301	1.556	1.556	16	8	1000	0.9505	0.9505	23	26
602	1.473	1.472	70	75	805	0.9472	0.9472	40	34
512	1.468	1.468)	68	84^{a}	132	0.9429	0.9430	32	31
020)	1.468	1.467)	68	84	624	0.9354	0.9355	19	12
205	1.458	1.458	39	44	913	0.9309	0.9309	42	42
I 15	1.352	1.352	43	46	331	0.9283	0.9283	41	42
513	1.347	1.347	38	41	913	0.9223	0.9224	16	11
006	1.282	1.282	13	17	821	0.9156	0.9156	20	16
315	1.257	1.258	8	8	133	0.9091	0.9093	26	21
315	1.246	1.246	19	17	426	0.8980	0.8980	31	28
5141		$1.232)$	-		822	0.8956	0.8956	23	22
223	1.232	1.232			716	0.8827	$0.8828)$)	
710		1.232 \}		112	318	0.8816	$0.8814\}$	$17\}$	13
223	1.227	1.228)		027	0.8799	0.8798)		
514	1.221	1.221	34	38	134	0.8687	0.8688	13	13
711	1.214	1.214	32	35	823	0.8657	0.8657	26	25
422	1.184	1.185	23	32					

${ }^{a}$ A comparison of $(I / L p)^{1 / 2}$ is made in place of the structure factor, where I and $L p$ are the intensity and the Lorentz-polarization factor, respectively.
model appears to give the best agreement with the data.

An important feature of the large $\mathrm{V}_{7} \mathrm{O}_{3}$ cell shown in Fig. 5(b) is that every atomic row parallel to $[001]_{m}$ consists of seven vanadium atoms and three oxygen atoms with the same sequence $\mathrm{V}^{*} \cdot \mathrm{VOV} \cdot \mathrm{VOV} \cdot \mathrm{VOV} \cdot$, where • indicates the vacant octahedral site. In these sequences, the three oxygen atoms are distributed evenly in the seven interstitial sites
so as to minimize the lattice strain in the atomic row. In other words, this is a unique structure in which the oxygen atoms do not occupy two successive octahedral interstitial sites in such a way as \cdot VOVOV \cdot. The configuration of these atomic rows in the lateral direction normal to $[001]_{m}$ will be discussed later. For the sake of convenience for the discussion, the coordinate of each row along $[001]_{m}$ is given in terms of $Z=n / 14$, that is the coordinate of
the metal atom marked with an asterisk, and $n(=0$ to 13$)$ is given in the bottom of Fig. $5(\mathrm{~b})$.

It is seen from this model that antiphase boundaries with respect to the oxygen distribution would be possible to form easily with various kinds of out-of-step vectors.

Structure of $\mathrm{V}_{7} \mathrm{O}_{3+x}$

Typical electron diffraction patterns of a specimen $O / V=0.52$ are shown in Fig. 6 with schematical illustrations. In addition to the reflections of the $\mathrm{V}_{7} \mathrm{O}_{3}$ structure, we can see many extra reflections which are indexed as $2 n(4 n \pm 1) / 2 \pm \varepsilon(2 n+1) / 2$ and $2 n+1$ $(4 n \pm 1) / 2 \mp \varepsilon(2 n+1) / 2$ in terms of the $\mathrm{V}_{7} \mathrm{O}_{3}$ structure. The zigzag distribution of the extra reflections in Fig. 6(b) is also interpreted in terms of the fractional parameter ε.

The reciprocal lattice depicted in Fig. 7 is constructed by a similar process to the case of the $\mathrm{V}_{7} \mathrm{O}_{3}$ structure. This is characterized by the appearance of paired extra reciprocal planes with $K=1 / 2 \pm \varepsilon, 3 / 2 \pm \varepsilon \ldots$, on which the extra superlattice reflections are lying as shown in Fig. 7. If we neglect the parameter ε, the indices for the extra reflections are given by $H^{\prime}=H, K^{\prime}=2 K$ and $L^{\prime}=2 L$ in terms of the indices for the $\mathrm{V}_{7} \mathrm{O}_{3}$ structure, and the systematic absence of reflections is expressed as $K^{\prime}+L^{\prime}=2 n+1$. These extra reflections are considerably broadened along the A^{*} axis, and a reason for this broadening will be discussed later briefly.

The value of ε is so small (~ 0.01) that the new superlattice is primarily considered to have the cell dimension $A \times 2 B \times 2 C$. Based
(a)

(b)

Fig. 6. Electron diffraction patterns of $\mathrm{VO}_{0.52}$. Incident beam is parallel to [301] $]_{m}$ in (a) and $[112]_{m}$ in (b), which correspond to [100] and [0I1] of the $\mathrm{V}_{7} \mathrm{O}_{3}$ superlattice, respectively. Indices given in the patterns and in the illustrations refer to the metal sublattice and the $\mathrm{V}_{7} \mathrm{O}_{3}$ superlattice, respectively. Full circles indicate the extra superlattice reflections for $\mathrm{V}_{7} \mathrm{O}_{3+x}$.

FIG. 7. Reciprocal lattice for the $\mathrm{V}_{7} \mathrm{O}_{3+x}$ structure. In addition to the reflections of the $\mathrm{V}_{7} \mathrm{O}_{3}$ structure located on the $H L$ planes with $K=0,1,2, \ldots$, the extra reffections appear on the paired $H L$ planes with $K=1 / 2 \pm \varepsilon$, $3 / 2 \pm \varepsilon$ and so on.

Fig. 8. (a) A basic model of the $\mathrm{V}_{7} \mathrm{O}_{3+x}$ structure composed of the $\mathrm{V}_{7} \mathrm{O}_{3}$ and $\mathrm{V}_{7} \mathrm{O}_{3+2 x}$ subcells. (b) Oxygen distribution in the $\mathrm{V}_{7} \mathrm{O}_{3+2 x}$ subcell. Excess oxygen atoms occupy statistically the interstitial sites marked by crosses with the occupation probability x.
on the observed extinction rule $K^{\prime}+L^{\prime}=$ $2 n+1$, we can deduce a basic model of $\mathrm{V}_{7} \mathrm{O}_{3+x}$ in which two kinds of subcells with the dimension $A \times B \times C$ are paired in both the directions of the vectors \mathbf{B} and \mathbf{C} as schematically depicted in Fig. 8: one of the subcells is the $\mathrm{V}_{7} \mathrm{O}_{3}$ cell and another one containing excess oxygen atoms is denoted as $\mathrm{V}_{7} \mathrm{O}_{3+2 x}$.

For this model, the structure factors for the extra reflections (K^{\prime} and $L^{\prime}=$ odd) are given as the difference between those for the two kinds of the subcells. The observed intensity of these reflections were so weak in comparison with the superlattice reflections (K^{\prime} and $L^{\prime}=$ even) for the $\mathrm{V}_{7} \mathrm{O}_{3}$ structure that the distribution of the excess oxygen atoms could not be definitely determined from quantitative
comparison of the observed and calculated structure factors. However, we can propose a most probable distribution of the excess oxygen atoms, which is presented in Fig. 8(b), from a consideration on lattice strain owing to the oxygen distribution. In the above mentioned atomic rows parallel to $[001]_{m}$ in the $\mathrm{V}_{7} \mathrm{O}_{3}$ structure (Fig. 5(b)), two octahedral sites in both sides of the vanadium atom at the origin remain unoccupied in pair ($\mathrm{V} \cdot \mathrm{V}^{*} \cdot \mathrm{~V}$), while other vacant sites are not paired ($\mathrm{V} \cdot \mathrm{VO}$ or $\mathrm{OV} \cdot \mathrm{V}$). Therefore, the excess oxygen atoms prefer to occupy statistically the former, which corresponds to the $4(i)$ positions with $x \simeq 1 / 14$ and $z \simeq 3 / 14$, rather than the others so as to minimize the lattice strain. When these sites are completely filled, the composition
of the large superlattice becomes $\quad \mathrm{V}_{7} \mathrm{O}_{4}$ ($\mathrm{O} / \mathrm{V}=0.52$), being very close to the limit of the homogeneity range of the γ phase.

The crystal structure of $\mathrm{O} / \mathrm{V} \gtrsim 0.5$ is primarily based on the above model, but it may be modified by taking account of $\varepsilon \neq 0$. From the analogy of nonintegral periods of antiphase domain structures in binary substitutional alloys (8), the fractional parameter ε is attributed to the fact that the period along [010] of the $\mathrm{V}_{7} \mathrm{O}_{3+x}$ structure is slightly less than $2 B$ by a random mixing of the regions with the period B in the matrix. The existence probability of the region with the period B is estimated as about $1 / 20$ from the observed value of ε.

It is suggested further that out-of-steps with respect to the distribution of the excess oxygen atoms take place approximately normal to [100] in the $\mathrm{V}_{7} \mathrm{O}_{3+x}$ structure. The anisotropic size effect of the antiphase domains may be the reason for the broadening of the extra reflections along the A^{*} axis. It is likely to grow such domains during the ordering process of the oxygen atoms.

Discussion and Conclusion

The $\mathrm{V}_{7} \mathrm{O}_{3}$ structure and its derivative $\mathrm{V}_{7} \mathrm{O}_{3+x}$ structure belong to the same family as those of $\alpha^{\prime}-\mathrm{V}_{8} \mathrm{O}$ (or $\mathrm{V}_{9} \mathrm{O}$) (5-7) and $\beta^{\prime}-\mathrm{V}_{16} \mathrm{O}_{3}$ (4), since the oxygen atoms in these structures are distributed regularly in the octahedral interstitial sites in the host metal lattice. The radius of the oxygen atoms situated in the $\mathrm{V}_{7} \mathrm{O}_{3}$ structure is estimated as about $0.76 \AA$, which is somewhat longer than the covalent radius ($0.66 \AA$). The two metal atoms are displaced along [001] ${ }_{m}$ by $\delta c \approx 0.28 \pm 0.03 \AA$, which is nearly equal to that ($0.27 \bar{\AA}$) in the $\mathrm{V}_{16} \mathrm{O}_{3}$ structure (4).

We will discuss the elastic energy associated with the displacement of the nearest neighbor metal atoms. Since the sequences of the atomic arrangement parallel to $[001]_{m}$ are identical in every atomic row in the $\mathrm{V}_{7} \mathrm{O}_{3}$ structure, the elastic energy varies with configurations of the neighboring atomic rows in the lateral direction. For examples, Fig. 9 shows the pairs of the parallel rows with the coordinates Z_{1} and Z_{2}; $\left|Z_{1}-Z_{2}\right|=1 / 14$ and $5 / 14$. There are five kinds

Fig. 9. Combinations of the parallel atomic rows with $\left|Z_{1}-Z_{2}\right|=1 / 14$ and $5 / 14$. For simplicity, the interatomic distances $r_{0} \pm \Delta$ and $r_{0} \pm 2 \Delta$ are denoted as $\pm \Delta$ and $\pm 2 \Delta$, respectively.
of the interatomic distances $r_{0}, r_{0} \pm \Delta$ and $r_{0} \pm$ 2Δ between the nearest neighbor metal atoms, where $r_{0} \approx\left(2 a^{2}+c^{2}\right)^{1 / 2} / 2 \approx 2.74 \AA$ and $\Delta=$ $\delta c \cdot \cos \tau \approx 0.18 \AA\left[\tau \approx \tan ^{-1}\left((2 a)^{1 / 2} / c\right)\right]$, neglecting the parameter δ^{\prime}. If we denote the numbers of the nearest neighbor pairs with the interatomic distances $r_{0}, r_{0} \pm \Delta$ and $r_{0} \pm$ 2Δ as N_{0}, N_{1} and N_{2} respectively, the strain energy associated with the displacements $\pm \Delta$ and $\pm 2 \Delta$ is proportional to $\left(N_{1}+4 \bar{N}_{2}\right) \Delta^{2}$. For all combinations of the paired atomic rows, the values $N_{1}+4 N_{2}$ are listed in Table III. We can see that the strain energy is minimum for the paired rows with $\mid Z_{1}-$ $Z_{2} \mid=5 / 14$.

It turns out from Fig. 5 that the $\mathrm{V}_{7} \mathrm{O}_{3}$ structure actually consists of these combinations; the oxygen atoms are distributed so as to minimize the elastic energy for the given oxygen concentration. The location of excess oxygen atoms in the $\mathrm{V}_{7} \mathrm{O}_{3+x}$ structure may also be understood from the same point of view. One can conclude, therefore, that the short range field of elastic strain caused by

TABLE III

Nearest Neighbor Pairs of the Metal Atoms

Difference in the Z coordinates of the paired rows $\left\|Z_{1}-Z_{2}\right\|$	Number of the metal atom pairs			
$1 / 14$	N_{0}	N_{1}	N_{2}	$N_{1}+4 N_{2}$
$3 / 14$	7	2	5	22
$5 / 14$	4	4	6	28
$7 / 14$	6	4	4	20
	4	4	6	28

the interstitial oxygen atoms plays an essential role in the structure of $\gamma-\mathrm{V}_{2} \mathrm{O}_{1 \pm x}$.

Acknowledgments

This work was partly supported by the fund in Aid of Scientific Research by the Ministry of Education
and by the Toray Science and Technology Grant. The support is gratefully acknowledged.

References

1. S. Kachi, K. Kosuge, and H. Okinaka, J. Solid State Chem. 6, 258 (1973).
2. S. Westman, Acta Chem. Scand. 17, 749 (1963).
3. M. Cambini, G. Pellegrini, and S. Amelinckx, Mater. Res. Bull. 6, 791 (1971).
4. K. Hiraga and M. Hirabayashi, J. Phys. Soc. Japan 34, 965 (1973).
5. M. Cambin, M. Heerschap, and R. Gevers, Mater Res. Bull. 4, 633 (1969).
6. M. Hirabayashi, S. Yamaguchi, K. Hiraga, and H. Asano, Proc. Intern. Conf. on Order-Disorder Transformations in Alloys, 266, Tübingen (1973).
7. D. Gunwaldsen and D. Potter, J. Less-Common Metals 34, 97 (1974).
8. K. Fuilwara, J. Phys. Soc. Japan 12, 7 (1957).
